Muster mit KI finden

  • Trainiere ein maschinelles Lernmodell, um etwas vorherzusagen

Das sind die Aktivitäten für diese Lektion:

3 TEILE DES MASCHINELLEN LERNENS

Erinnere dich daran, dass künstliche Intelligenz, insbesondere maschinelles Lernen, aus drei Hauptbestandteilen besteht.

Datensatz

Muster finden

Vorhersage treffen

In dieser Lektion konzentrieren wir uns auf den zweiten Teil, das Finden von Mustern, indem wir unser eigenes KI-Modell trainieren, das in der Lage ist, eine Vorhersage zu treffen.

Es gibt viele kostenlose Online Plattformen auf denen du ein KI-Modell mit überwachtem Lernen trainieren kannst.

Überwachtes Lernen ist genau so, wie es klingt - du überwachst, wie das Modell lernt, indem du ihm die richtige Antwort vorgibst.

Wenn du zum Beispiel möchtest, dass ein KI-Modell erkennt, ob ein Bild ein Hund oder eine Katze.

Hundegesicht
Katzengesicht

Dein Datensatz besteht aus vielen, vielen Bildern von Hunden und Katzen.

Du hilfst dabei, das Modell zu trainieren, indem du ihm sagst, welche Bilder Hunde und welche Katzen sind.

PLANUNG FÜR DEIN MODELL

Dein Modell wird etwas vorhersagen oder klassifizieren. Oft werden diese Modelle als Klassifizierungsmodellegenannt. 

Erste Schritte:

  1. Was klassifizierst du? Sind es Bilder, Texte, Töne? Das ist dein Datentyp.
  2. Welche verschiedenen Klassifizierungen sind möglich? Zum Beispiel, Hunde und Katzen. Dies sind deine Klassen. Sie werden manchmal auch bezeichnet als Etiketten.
  3. Sammle die passenden Daten, um dein Modell zu trainieren. Finde jede Menge unterschiedlicher Daten, die jede Klasse repräsentieren. Zum Beispiel viele, viele Bilder von verschiedenen Hunden und Katzen!
Teachable Machine Screenshot Training von Hunden und Katzen

EMPFOHLENE PLATTFORMEN

Es gibt viele kostenlose und Open-Source-Plattformen, um KI-Klassifizierungsmodelle zu erstellen. 

Wir haben eine Liste von Programmen und Plattformen zusammengestellt, auf denen du das kannst:

  • baue dein Modell, um eine Vorhersage zu treffen
  • dann dein Modell in einer mobilen oder Web-App verwenden, um eine Aktion auf der Grundlage der Vorhersage durchzuführen

Hier ist ein kurzer Überblick darüber, was jede Plattform klassifizieren und integrieren kann.

Plattform Klassifizierung Typen Technovation Integration
Teachable Machine von Google Bilder, Töne, Posen App InventorPython, andere Integrationen möglich
MachineLearningForKids Bilder, Töne, Text, Zahlen Python, App Inventor
MIT App Inventor Bilder, Töne, Posen App Inventor
Ximilar Bilder Thunkable, App Inventor, wep apps, APIs verwenden

AKTIVITÄT: EIN MASCHINELLES LERNMODELL TRAINIEREN

Geschätzte Zeit: 30 Minuten

Baue ein Stein-Papier-Schere-Modell

Folge dem Arbeitsblatt, um mithilfe der Teachable Machine-Plattform von Google ein maschinelles Lernmodell zu erstellen, das die Handzeichen von Stein, Papier und Schere erkennt.

Anschließend kannst du dein Modell mit einer einfachen, vorgefertigten Javascript-Interaktion in Aktion sehen.
Öffne das Arbeitsblatt

REFLEXION

Du hast dein erstes KI-Modell erstellt! Dies sollte dir einen Einblick in den Prozess der Erstellung eines KI-Modells geben. Alle Plattformen zur Modellerstellung funktionieren ähnlich, auch wenn sich die Schnittstellen leicht unterscheiden können.

Reflexion im Gebäude
War dein Modell bei der Erkennung von Stein, Papier oder Schere erfolgreich?
Wurde er mit einem "guten" Datensatz erstellt?
Wie könntest du den Datensatz verbessern?
Wenn ein Freund oder eine Person an einem anderen Ort als du dein Modell und dein Projekt verwenden würde, würde es dann genauso gut funktionieren? Warum oder warum nicht?

ÜBERPRÜFUNG DER SCHLÜSSELBEGRIFFE

  • KI (oder maschinelles Lernen) Modell - Künstliche Intelligenz, die auf einen Datensatz trainiert wird, um Muster zu erkennen und etwas vorherzusagen oder zu klassifizieren
  • Überwachtes Lernen - Maschinelles Lernen, bei dem ein Modell trainiert wird, indem ihm ein richtiges oder falsches Ergebnis mitgeteilt wird
  • Klasse - ein Label, das einem KI-Modell gegeben wird, damit es lernt, Eingaben nach ihrer Klasse zu klassifizieren

ZUSÄTZLICHE RESSOURCEN

Wenn du mehr über künstliche Intelligenz und maschinelles Lernen erfahren möchtest, findest du hier eine tolle Playlist von Daniel Schiffman von der New York University